SSH - Secure Shell
Attacks and Best-Practices in 2023

04.08.2023, LuxCamp 2023 der LuXeria, Bruttisellen
Emanuel Duss <emanuel.duss@compass-security.com>

Intro

* Pentests & Security Assessments
» Linux Hardening Reviews

= Topics
= SSH Introduction
= Service

» [nformati \ “sed

= SSH Auth nticaticw(éc\eg'lﬂﬂ
: SS“ FY\Q)“!rding

= SSH Agent
S>H Session Multiplexing

As@, FA, EIDO2)

» Cryptographic Algorithms

compass-security.com

SSH Introduction

Secure Shell

» Establish authenticated & encrypted network connection to remote systems

= Used for
= Remote login / shell access

4
A
|

~

= Data transfer

= Port forwarding

KEEPING YOUR COMMUNIQUES SECRET

249009040 8¢

= Traffic tunneling, proxying

.5 006008 5.9,9039.3958332983350

ikl Il

» History
» Replacement for plaintext protocols (rsh, rlogin, telnet, ftp, ...)
= Server / Client Architecture

B Windows PowerShell X |+~
u SSH VerSIOI‘] 1 |n 1995 Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.
. SSH VerSIOn 2 In 2006’ Standardlzed In Varlous RFCS Try the new cross-platform PowerShell https://aka.ms/pscore6
u OpenSSH |S one |mp|ementat|on I__-:_)ading personal and system profiles took 597ms.

= Available on all major Linux/Unix OS 5 > ssh

SH_7.6pl, LibreSsL 2.5.

= Available for Windows since 2017 -

compass-security.com 4

SSH Tools & Files

» Tools
= Remote Operations: ssh, scp, sftp

» Key Management: ssh-add, ssh-keyscan, ssh-keygen, ssh-keysign
» Server side: sshd, sftp-server, ssh-agent

= Files
» Server config: /etc/ssh/sshd _config and /etc/ssh/sshd _config.d/

» Global client config: /etc/ssh/ssh_config and /etc/ssh/ssh _config.d/
» Personal client config: ~/.ssh/config

» Manpages
= Everything is lovely documented!
» ssh(1), ssh-add(1), ssh-agent(1), ssh-copy-id(1), ssh-keygen(1), ssh-keyscan(1), ssh-
keysign(8), ssh-pkcsll-helper(8), ssh _config(5), sshd(8), sshd config(5)

compass-security.com

SSH Commands

= Establish remote shell session
alice@beastie:~$ ssh puffy
Welcome to pufty.
alice@puffy:~$%

» Execute command on remote system

alice@beastie:~$ ssh puffy id

Welcome to pufty.

uid=1001(bob) gid=1001(bob) groups=1001(bob),27(sudo)

= Copy files remotely

alice@beastie:~$ scp puffy:/etc/ssh/sshd _config .
alice@beastie:~$ scp .ssh/known_hosts puffy:.ssh/
alice@beastie:~$ scp puffy:notes aix:/tmp/

compass-security.com

SSH Commands

*» Local port forwarding
alice@beastie:~$ ssh -L 1234:1localhost:8080 puffy
alice@beastie:~$ ssh -L 0.0.0.0:1234:10.5.23.52:8080 puffy

* Remote port forwarding
alice@beastie:~$ ssh -R 8080:10.5.23.42:8080 puffy
alice@beastie:~$ ssh -R 0.0.0.0:8080:1localhost:8080 puffy
Requires 'gatewayports clientspecified'

» Create SOCKS proxy on the local host for tunneling traffic through remote host
alice@beastie:~$ ssh -D 1080 puffy

» Create SOCKS proxy on the remote host for tunneling traffic through local host
alice@beastie:~$ ssh -R 1080 puffy

= This is not a talk about SSH tricks and ninja magic. This would fill several other talks @)!

compass-security.com

Useful Use-Case for Pentests /‘

= Situation
» You got a notebook of a customer for an internal pentest
» The internal pentest is performed remotely using the VPN client on the notebook
» The notebook has all the latest and fancy anti-malware / EDR software installed

* Poor analyst’s problem
» You can’t use your $TOOLS from your Kali VM or on the customer’s notebook

= Solution: SSH to the rescue! @ f&

» Connect the notebook to your testing network where your testing VM is
» Use SSH from the notebook to create a SOCKS proxy on your attacker machine
» You can then access the corporate network from your attacker machine

compass-security.com 8

Useful Use-Case for Pentests

= Connect notebook to own network and execute:
PS domainuser@notebook C:\> ssh -R 1080 kali »

* New SOCKS proxy on your attacker kali:

attacker@kali:~ $ sudo ss -1ltpn sport = 1080 | cat

State Recv-Q Send-Q Local Address:Port Peer Address:PortProcess

LISTEN © 128 127.0.0.1:1080 0.0.0.0:* users: (("sshd",pid=8169,fd=9))
LISTEN © 128 [::1]:1080 [::]: users: (("sshd",pid=8169,fd=7))

= Created tunnel:

AENA

R SOCKS E VPN AL L Corporate Network
1 & !
.4

* You can now access the customer’s network (SOCKS limitations apply):
attacker@kali:~ $ proxychains crackmapexec smb -u alice -p s3cret -d example.net
dc.example.net

[...]

compass-security.com

SSH Server Commands

» Show running SSH server configuration:
alice@beastie:~$ sudo sshd -T

port 22 Useful for
addressfamily any hardening reviews!

listenaddress [::]:22
[...]

» Test SSH server configuration:

alice@beastie:~$ /usr/sbin/sshd -t

/etc/ssh/sshd _config: line 18: Bad configuration option: ThisOptionDoesNotExist
/etc/ssh/sshd_config: terminating, 1 bad configuration options

» Start SSH server in debug mode:

alice@beastie:~$ sudo /usr/sbin/sshd -d

debugl: sshd version OpenSSH 8.4, OpenSSL 1.1.1n 15 Mar 2022
debugl: Bind to port 22 on 0.0.0.0.

[...]

compass-security.com

Service Exposure

Service Exposure

* The SSH server runs on port 22/tcp by default.

» They can easily be found.

Y Shodan Search Engine — Mozilla Firefox

% Shodan Search Engine x +
C @ O B8 == ht w.shodan.io/search/report

Shodan Maps ages Monitot

SHODAN Explore Downloads Pricing & k::ountry:ch port:22 Q Account

ShOdan Report country:ch port:22 TOtal: 86'422

// GENERAL

£ Products {J Operating
Systems

OpenSSH

Drepbear sshd 3,468 659 Ubuntu
HP Integrated Lights-Out mpSSH i Debian
ZyXEL ZyWALL sshd 8o Linux
Linksys WRT45G modified FreeBSD

dropbear sshd Debian-Security

MORE... MORE...

compass-security.com

Service Exposure

= Attack
» When exposed to the Internet, external attackers can easily find your SSH servers.

» They can then perform further attacks on this system.

» Recommendations
= Only expose your servers when necessary.
= Only expose your servers to allowed IP addresses when possible.

* Note
*» |t's possible to “hide” the server by using a random high port or port knocking.
» This is security by obscurity and should not be used for security reasons.
» Can be used to prevent non-targeted attacks from script kiddies.
= Can be done, but security should not rely on this.
» |Instead, the system should be correctly configured and managed.
» This includes hardening, patching, network segregation, logging, monitoring, alerting, ...
» System events, file manipulation, firewall rules, user behavior, login sources, failed/successful logins, ...

compass-security.com

Information Disclosure

Information Disclosure

» The SSH version banner can be grabbed unauthenticated

$ ncat puffy.example.net 22
SSH-2.0-0penSSH_8.4pl1 Debian-5+debllul ‘

= Attack
= An attacker could gain information about the system and perform targeted attacks.

» Recommendations
» Hide what’s possible.
= But again: the security should not rely on hiding information!
» Instead, patch your systems!

» The banner can’t be disabled via SSH server config.

» Debian can suppress some information:
DebianBanner no

= Result

$ ncat debian.example.net 22
SSH-2.0-0penSSH_8.4p1

compass-security.com

SSH Authentication

Host Authentication

= Users must authenticate the server.

» The host has one or more host keys (ECDSA, Ed25519, RSA).

= Alternatively, an SSH certificate authority (CA) can be used.

» On first connection, a host key fingerprint his shown:

alice@beastie:~$ ssh puffy

The authenticity of host ' puffy (203.0.113.23)' can't be established.

ED25519 key fingerprint is SHA256:aPDwXPsHTWTSebUW3jPkb4nH/1UGmvILmQsEkXKsY9c.
This key is not known by any other names.

Are you sure you want to continue connecting (yes/no/[fingerprint])?

* |[f accepted, host key is stored in users' known hosts file ~/.ssh/known_hosts.
» These host keys are then trusted for future connections.
» TOFU: Trust On First Use principle

» Users generally don't verify this fingerprint.

compass-security.com

Host Authentication

= Host keys can be stored in DNS (SSHFP resource record) DNS
puffy.example.net IN SSHFP 4 2 5b7629b7b5906567aaf57b[...]f96079c3

» SSH clients can use SSHFP records this to verify host key
VerifyHostKeyDNS ask # or 'yes' to automatically accept s

» Example session
alice@beastie:~$ ssh puffy

[...]
Matching host key fingerprint found in DNS.

Are you sure you want to continue connecting (yes/no)?

* Not always trustworthy
» Without DNSSEC, the DNS resolver can’t verify authenticity of SSHFP record.
» Without DNSSEC or DNS over TLS (DoT), a client can’t trust DNS resolver.

compass-security.com

Host Authentication

= Attack

» When a user accepts an arbitrary host key, an attacker between client & server can sniff and
manipulate the network traffic (like credentials) or let the user connect to an untrusted system.

» Recommendation
» Users should NEVER have to verify host keys themselves, since they don’t do it properly.
» A centrally managed known hosts file should be used (default is /etc/ssh/ssh_known hosts)
= Alternatively, an own SSH key CA could be used.

compass-security.com

User Authentication ‘

= Different types and combinations of user authentication methods ‘
» Host-based authentication
» Password authentication
» Public key authentication
» GSSAPI (used for single sign-on like Kerberos or NTLM)
» Keyboard interactive (via PAM, used e.g. for 2FA)
» Combination using either public key & password or public key & 2FA

» Example server config (sshd_config)

AuthenticationMethods password # Password only

AuthenticationMethods publickey # Public key only

AuthenticationMethods keyboard-interactive # Authentication via PAM
AuthenticationMethods publickey,password publickey,keyboard-interactive # 2FA
AuthenticationMethods publickey,publickey # Two different public keys

compass-security.com

User Authentication

= Attack
» When password authentication is enabled, attackers can try to online brute-force passwords.

» Recommendation
» Generally, if the password is strong (long and random), password authentication is OK.
= However, users tend to choose weak passwords.
» Furthermore, passwords may leak through data breaches, phishing attacks, password reuse, ...
» Therefore, enforce public key authentication or 2FA.
» When using passwords, a brute-force protection should be implemented.

compass-security.com

Exercise Solution

hacker@kali:~

hackergkali:

$ time ncrack -p 22 --user bob -P /usr/share/ncrack/default.pwd -f 10.0.2.9J
I

compass-security.com 30

Password Sniffing as Root

= Attack
= An attacker with root access on the server can read the password when a user authenticates.
= |f this password is valid on another system (when the same password is configured or when LDAP is
used), an attacker can use the password and use it for lateral movement.
= Common scenarios
= Server owner who is admin on only one system.
= External partner who has admin access on only some systems.

» Recommendation
» Enforce public key authentication or 2FA (when the 2FA secret is different on every server).

compass-security.com

Password Sniffing as Root

= Attacker

root@tux:~$% sudo strace -p "$(pgrep -f /usr/sbin/sshd)" -f -e trace=write
strace: Process 19531 attached

strace: Process 19594 attached

[...]

[pid 19595] write(5, "\@\0\0\4alice", 8) = 8

[...]

[pid 19595] write(5, "\@\0\0\10P@ssword", 12) = 12
[...]

~C

root@tux:~$% ssh alice@puffy

alice@puffy’s password: **FFk*i*

Welcome to puffy.

= User
alice@beastie:~$ ssh alice@tux
alice@tux’s passwonrd: **i**kxk

compass-security.com

Session Sniffing as Root

* The root user can by design do everything on a system.

* Tools like sshspy can show the terminal of logged in users in real-time
» ['s a small bash script which uses strace to get all the information.
» https://github.com/InfosecMatter/Scripts/blob/master/sshspy.sh

= Attack

= An attacker with root access on the server can see/read everything other users do on the system.
» This also includes typed passwords.

* Recommendation
= Keep in mind who is root on the system and act accordingly.
» Don’t store data / process information / type passwords on untrusted systems.

compass-security.com

https://github.com/InfosecMatter/Scripts/blob/master/sshspy.sh

SSHSpy Demo

* | Terminal

compass-security.com 34

Public Key Authentication

» Passwordless authentication
» User generates keypair
* Private key on client

Admin User SSH Server
» Public key on target server ()

v
» Login using key . ‘ '.g :

Q Generate keypair ¢

<« Publickey —

Copy public key to server g

Login q

compass-security.com

Public Key Authentication ‘

4

» Key pairs are stored in users’s ~/.ssh directory.

= Different algorithms are available (DSA, ECDSA, Ed25519, RSA).

* Private keys can be encrypted using a passphrase.

» Private keys can be stored on secure devices
» Smart Cards (PKCS11)
» Hardware Keys / FIDO2 keys (e.g. Yubikey, Nitrokey, ...)
= TPM

» Public keys are stored in the authorized keys file on the target server

» By default, two authorized keys files are used (sshd_config):

AuthorizedKeysFile
Specifies the file that contains the public keys used for user authentication
[...] The default is ".ssh/authorized keys .ssh/authorized keys2".

» Instead of distributing lots of keys, an SSH key CA could be used.

compass-security.com

Public Key Authentication

= Attacks
= An attacker who can perform privilege escalation on a host where private keys are stored can use them.

= An attacker can try to offline brute-force the private key passphrase.
» The authorized keys files can be used as a “backdoor”.

» Recommendation
» Keys should not be stored on systems where other user’s have access to (e.g. jump hosts, source code
repositories, scripts, ...).
= Keys should be protected using a strong passphrase or placed on a secure device.
» The authorized keys files should be centrally managed and monitored.
= Explicitly define the authorized keys file.

» Example server config (sshd_config)
AuthorizedKeysFile .ssh/authorized keys

compass-security.com

Allowed Users & Groups)

» By default, all users are allowed to login if they have a login method configured.
» Users with a password / SSH keys configured

= Attacks
= RCE in a web application — change password via «echo alice:P@sswlrd | chpasswd» — shell

= Arbitrary file write in a web application — write one’s SSH keys to ~/.ssh/authorized keys — shell

» Recommendation
» Shared accounts should generally not be used — disable root login via SSH.
» Only authorized users/groups should be able to establish an SSH connection.
» Restrict SSH access to explicitly allowed users or groups.

» Example server config (sshd_config)
AllowUsers alice bob

AllowGroups sysadmins ssh-users
PermitRootLogin no # Implicit, but enforce even if root is in allowed group

compass-security.com

Public Key Information Leakage

I I
» Public keys are public (as the name says). B —
= Without the private key, you can’t use them to authenticate. X

= Keys might be exposed where you don’t expect.

» E.g. all GitHub user keys are pubilic:
$ curl https://github.com/emanuelduss.keys
ssh-ed25519 AAAAC3NzaCllZDIINTESAAAAIHUpSBIZZ8EJy6hGGFOX9uypjIJhLPUZNRFeYEIZtyKT4

» Also, you send your public key(s) to every server you try to authenticate.
» By default: id_rsa, id _ecdsa, id ecdsa_sk, id ed25519, id ed25519 sk, id dsa in ~/.ssh/
& all keys loaded into the SSH agent.

* The user’s public key is sent encrypted over the network after the host authentication.
= A Machine-in-the-Middle attacker can’t read the public key.

compass-security.com

Public Key Information Leakage

= |f you login to arbitrary servers, you do expose your public key.

» PoC by Filippo Valsorda: htips://words.filippo.io/ssh-whoami-filippo-io/

= |t checks if your sent public key is on GitHub and shows your username:

$ ssh whoami.filippo.io
0o/ Hello Emanuel Duss!

Did you know that ssh sends all your public keys to any server
it tries to authenticate to?

@emanuelduss, which are available via the GraphQL API
and at https://github.com/emanuelduss.keys

-- Filippo (https://filippo.io)

+
|
|
|
|
|
| We matched them to the keys of your GitHub account,
|
|
|
|
|
| P.S. The source of this server is at

|

https://github.com/FiloSottile/whoami.filippo.io

compass-security.com

https://words.filippo.io/ssh-whoami-filippo-io/

Public Key Information Leakage

" |t's possible to verify if a public key can be used to login or not, even without the private key:
alice@beastie:~$ ssh -v -i key.pub root@puffy

[...]

debugl: Offering public key: key.pub ED25519
SHA256:L619XZbogqfh8ui85GqTBRPCpwkrxECR3W0OoIagTWeno explicit

debugl: Authentications that can continue: publickey

debugl: No more authentication methods to try.

[...]

alice@beastie:~$ ssh -v -i key.pub alice@puffy

[...]

debugl: Offering public key: key.pub ED25519 I
SHA256:L619XZbogqfh8ui85GqTBRPCpwkrxECR3WOoIagTWeno explicit
debugl: Server accepts key: key.pub ED25519 'S
SHA256:L619XZboqfh8ui85GqTBRPCpwkrxECR3W00oIagTWeno explicit

[...]

compass-security.com

Public Key Information Leakage

» This process can be automated:
$ sudo nmap -p 22 --script ssh-publickey-acceptance --script-args
‘ssh.usernames={"root", "alice"}, publickeys={"./id_rsal.pub", "./id_rsa2.pub"}' puffy

Nmap scan report for puffy (10.5.23.42)
22/tcp open ssh syn-ack

| ssh-publickey-acceptance:

| Accepted Public Keys:

| Key ./id_rsal accepted for user alice

» Use Case
» You find 50 passphrase encrypted SSH keys during an internal pentest
» The pentest ends tomorrow and you only want to crack keys which are useful for you.

» Which one do you want to crack?

compass-security.com

Public Key Information Leakage

= Attacks
= An attacker can get access to your public key when you login on an attacker-controlled system.

» Recommendation
» Use different keys for different services (e.g. internal systems, external systems, external partners, 3™
party services, ...) and always only use one to connect.

» This can be done via the following SSH config (~/.ssh/config):
Host github.com
IdentityFile .ssh/id ed25519 github
Host *.example.net
IdentityFile .ssh/id ed25519 internal
Host *
IdentityFile .ssh/id ed25519 external

compass-security.com

Exercise Solution

bobalinux-srv-01:~$ hostname

linux-srv-01

bob@linux-srv-01:~$ id

uid=1000(bob) gid=1000(bob) groups=1000(bob)
bob@linux-srv-01:~$ |

compass-security.com 45

Private Key Information Leakage

L L
* You can specify a comment during key generation (default is username@hostname): ¥
$ ssh-keygen -t ed25519 -C mykey
Generating public/private ed25519 key pair. 4

[...]

» The comment is stored inside the public key file:

$ cat .ssh/id _ed25519.pub
ssh-ed25519 AAAAC3NzaC1llZDIINTESAAAAIBPhRbyUNQirYCo6GrODJ++J1/MUtTIPW1dBafg8vLu+ mykey

» The comment is also stored inside the private key as well and can be shown:

$ rm .ssh/id_ed25519.pub
$ ssh-keygen -y -f .ssh/id_ed25519
ssh-ed25519 AAAAC3NzaC1llZDIINTESAAAAIBPhRbyUNQirYCo6GrODJ++J1/MUtTIPW1ldBafg8vLu+ mykey

* This is usually no problem, since private keys should be kept private.

» But keep this in mind when you generate private keys which someone else could read (e.g. for
trainings, CTF challenges, OPSEC during red team engagements, ...)

compass-security.com

2FA Authentication: OTP

* One example of 2FA authentication using public keys + authenticator app (OTP)

» SSH server configuration (/etc/ssh/sshd _config)
AuthenticationMethods publickey,keyboard-interactive
PasswordAuthentication no

UsePAM yes

ChallengeResponseAuthentication yes

* Install 1ibpam-google-authenticator

» For every, user, generate OTP configuration (creates ~/.google authenticator):
alice@puffy:~$ google-authenticator

* PAM config for SSH (/etc/pam.d/ssh)

Standard Un*x authentication.

#@include common-auth

auth required pam _google authenticator.so nullok

compass-security.com

2FA Authentication: OTP

» Example session
alice@beastie:~$ ssh -v puffy
[...]

debugl: Authentications that can continue: publickey

debugl: Next authentication method: publickey

debugl: Offering public key: /home/carol/.ssh/id ed25519 ED25519
SHA256: /gM8Kw1IwTx/1j0G6k1Z2ILe/12/KO1yAr0/zUGLgW8

debugl: Server accepts key: /home/carol/.ssh/id ed25519 ED25519
SHA256: /qM8Kw1JIwTx/ijoG6k1Z2ILe/12/KO1lyAro/zUGLgWS
Authenticated with partial success.

debugl: Authentications that can continue: keyboard-interactive
debugl: Next authentication method: keyboard-interactive
Verification code: 500230

Welcome to puffy.

alice@puffy:~$%

compass-security.com

2FA Authentication: OTP

= Attack
= An attacker with root access on the server can
» read the password when a user authenticates and
» Extract the secret of the OTP file
= |f the same password and OTP seed is used on another system, an attacker can use this information for
lateral movement.

» Recommendation
» Use public key authentication instead of passwords.

» Use a different OTP on every system.
» Use another 2FA method which is not vulnerable (like FIDO2)

compass-security.com

2FA Authentication: FIDO2 0

* FIDOZ2 is an open authentication standard

» FIDO authenticator contains cryptographic key pairs inside hardware °
» e.g. Yubikey, Nitrokey

» Native support in newer OpenSSH versions (= 8.2p1)
» Key types: ecdsa-sk or ed25519-sk (these can also be passphrase protected)
= A FIDO PIN or biometrics must be set on the FIDO key to generate keys

» Discoverable / resident keys
» Private key is stored on FIDO key (private key protected by the FIDO key can be copied from the key)
= Only FIDO key is required to login

» Non-discoverable / non-resident
» Private key stored in ~/ . ssh, protected using FIDO key
» FIDO key & generated key file is required to login

compass-security.com

2FA Authentication: FIDO2 with Resident Key a

» Generate resident key: Q
alice@beastie:~$ ssh-keygen -t ed25519-sk -0 resident -0 application=ssh:alice-work
Generating public/private ed25519-sk key pair.

You may need to touch your authenticator to authorize key generation.

Enter PIN for authenticator:

You may need to touch your authenticator again to authorize key generation.

Enter file in which to save the key (/home/alice/.ssh/id ed25519 sk):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/alice/.ssh/id ed25519 sk

Your public key has been saved in /home/alice/.ssh/id ed25519 sk.pub

[...]

* New key entry on authenticator:
alice@beastie:~$% ykman fido credentials list

Enter your PIN:
ssh:alice-work 000000000000000000000000000000V0VVRVVVORVRVOLVRVOLORVRLRRRRRVA openssh

compass-security.com

2FA Authentication: FIDO2 with Resident Key a

4

* Private key is stored in ~/ . ssh:

alice@beastie:~$ 1ls -1 .ssh/id _ed25519 sk*

-PW--=--=--- 1 alice alice 529 Mar 28 14:29 .ssh/id ed25519 sk
-PW------- 1 alice alice 157 Mar 28 14:29 .ssh/id _ed25519 sk.pub

* Private key can only be accessed with key material on the FIDO key (tied to FIDO key).

» Login using the passphrase protected private key and the FIDO key:
alice@beastie:~$ ssh puffy

Enter passphrase for key '.ssh/id_ed25519 sk’:

Confirm user presence for key ED25519-SK

SHA256 : uQwkgxPZ01bTj3ARWxa/6EL6PAQemQQ2X4pViE/jelw

User presence confirmed

Welcome to pufty.

alice@puffy:~$

compass-security.com

2FA Authentication: FIDO2 with Resident Key a

4

* The private key can be downloaded to another client (FIDO PIN is required):
alice@dragonfly:~$% ssh-keygen -K

Enter PIN for authenticator:

You may need to touch your authenticator to authorize key download.
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Saved ED25519-SK key ssh:alice-work to id ed25519 sk rk _alice-work

» A new passphrase for the key can be defined.

* Instead of copying the key, the key can also be loaded into the SSH agent:
alice@dragonfly:~$ ssh-add -K

Enter PIN for authenticator:

Resident identity added: ED25519-SK SHA256:k163KizwgVqe4RtCPhiMgnExygduOTMQdqLIRIFXKZg

compass-security.com

2FA Authentication: FIDO2 with Resident Key a

4

* This key can then again be used to login:
alice@beastie:~$ ssh puffy

Enter passphrase for key '.ssh/id_ed25519 sk’:
Confirm user presence for key ED25519-SK

SHA256 : uQwkqxPZ01bTj3ARWxa/6EL6PdQemQQ2X4pViE/jelw
User presence confirmed

Welcome to puffy.

alice@puffy:~$%

compass-security.com

2FA Authentication: FIDO2 with Resident Key a

= Attacks
= An attacker with
» a) knowledge of the FIDO key PIN
= b) physical access to the FIDO key

4

= can copy the private key to an own machine and use it to authenticate.

= Recommendation

» For higher security, resident keys should not be used.
» [nstead, non-resident keys should be used.

» Generate non-resident keys:
alice@beastie:~$ ssh-keygen -t ed25519-sk -0 application=ssh:alice-work

» The generated private keys are protected via the FIDO key.

* They are not stored on the FIDO key itself and must be copied manually to other systems
* ~/.ssh/id_ed25519_sk and ~/.ssh/id_ed25519 sk.pub

compass-security.com

2FA Authentication: FIDO2 Without Touch

» By default, FIDO keys require user presence (key touch) for every key access. x

= A user can generate a key which does not require user presence:
alice@beastie:~$ ssh-keygen -t ed25519-sk -0 resident -0 no-touch-required -0
application=ssh:alice-work

» By default, SSH servers require user presence.

= A user can overwrite this in their personal authorized keys file:

alice@puffy:~$ cat .ssh/authorized keys

no-touch-required sk-ssh-ed25519@openssh.com
AAAAGNNrLXNzaCl1lZDIINTES5QGOwWZW5zc2guY29tAAAAIEVUpHBQeQCE4QuuTnTijntxMFdknEzPDO6tKkfa88M
NAAAADNNzaDphbGl1jZzS13b3Jr alice@beastie

* The user can then login without touch (SSH key passphrase is required if set):
alice@beastie:~$ ssh puffy

Enter passphrase for key '.ssh/id_ed25519 sk’:

Welcome to pufty.

alice@puffy:~$

compass-security.com

2FA Authentication: FIDO2 Without Touch

= Attacks x

= An attacker with
» a) access to the FIDO key protected private key (no passphrase set, weak passphrase set, loaded
into SSH agent)
» b) code execution on the client
» ¢) FIDO key plugged in
= can establish an SSH connections without the user noticing.

* Recommendation
» The server should enforce user presence.

* The server can enforce user presence (sshd_config):
PubkeyAuthOptions touch-required

* The user’s cant override this anymore in the authorized keys file.

compass-security.com

2FA Authentication: FIDO2 Without User Authentication

= Attacks x

= An attacker with

» a) access to the FIDO key protected private key (no passphrase set, weak passphrase set, loaded
into SSH agent)
» b) Physical access to the FIDO key
= can establish an SSH connections using the private key and by touching the FIDO key.

» Recommendation
» The server should enforce user authentication on every FIDO key access (PIN/biometrics).

» The server can enforce user authentication (sshd_config):
PubkeyAuthOptions verify-required

* The user’s cant override this anymore in the authorized keys file.

compass-security.com

2FA Authentication: FIDO2 With User Authentication

» A user then has to generate keys which require authentication:
alice@beastie:~$ ssh-keygen -t ed25519-sk -0 resident -0 verify-required -0
application=ssh:alice-work

» The user then must enter the SSH key passphrase, the FIDO key PIN and touch the FIDO key:

alice@beastie:~$ ssh puffy

Enter passphrase for key '/home/alice/.ssh/id_ed25519 sk':
Confirm user presence for key ED25519-SK
SHA256:11vUu+gDwFaIOZvBgODlzmcr5d60+71jmzxJIp/8KXAcC

Enter PIN for ED25519-SK key /home/alice/.ssh/id_ed25519 sk:
Confirm user presence for key ED25519-SK
SHA256:11vUu+gDwFaI0ZvBgODlzmcr5d60+71jmzxJp/8KxAc

User presence confirmed

Welcome to pufty.

alice@puffy:~$%

compass-security.com

2FA Authentication: FIDO2 With User Authentication

= Example session on another client using resident keys & ssh-agent (requires ssh-askpass):
alice@beastie:~$ ssh -K

Enter PIN for authenticator:

Resident identity added: ED25519-SK SHA256:p6SwhjOD8xhNoY7BCctSENzovyRVe3UpTwINgmWBbsc

+

alice@beastie:~$ ssh -v puffy

OpenSsH

Enter PIN and confirm user presence for ED25519-5K key
SHA256:p65whj0D8xhNoY7BCcfSENzovyRVe3UpTwINgmWBbsc:

Cancel

No passphrase required,

since private key file is
Welcome to puffy. not copied to machine.

alice@puffy:~$%

compass-security.com

SSH Agent

SSH Agent

A

» To address this, keys can be loaded once into a so-called SSH agent. _
» | oading the key requires the passphrase.

» With passphrase protected keys, the key must be unlocked for each connection.

» SSH agent is a process running in the background on the user’s client.
» Holds private keys used for public key authentication.

* The key can then be used without entering the passphrase again

compass-security.com

SSH Agent

= Uses environment variables to connect to the agent socket.

= Example for Linux

alice@beastie:~$ eval $(ssh-agent)
Agent pid 1318

alice@beastie:~$ env | grep ~SSH
SSH_AUTH_SOCK=/tmp/ssh-PmBPRK9DcVkb/agent.2305
SSH AGENT_PID=1318

alice@beastie:~$ 1ls -la /tmp/ssh-TUKDBryLDJUV/agent.1347
SPW------- 1 alice alice © Feb 21 13:14 /tmp/ssh-TUKDBryLDJUV/agent.2305

compass-security.com

SSH Agent

alice@beastie:~$ ssh puffy
Enter passphrase for key '/home/alice/.ssh/id ed25519"':
~C

alice@beastie:~$ ssh-add
Enter passphrase for /home/alice/.ssh/id ed25519:
Identity added: /home/alice/.ssh/id ed25519 (alice@beastie)

alice@beastie:~$ ssh-add -1
256 SHA256:4CbWpsIx01X+xvhHAZwWVyPU50dRyV810skV2509G21g alice@beastie (ED25519)

alice@beastie:~$% ssh puffy
Welcome to puffy.
alice@puffy:~$

compass-security.com

SSH Agent

» Example for Windows

PS > Get-Service ssh-agent | Set-Service -StartupType Automatic '_
PS > Get-Service ssh-agent

[...]
Running ssh-agent OpenSSH Authentication Agent

PS > ssh-add ~\.ssh\id ed25519
256 SHA256:4CbWpsIx01X+xvhHAZwWVyPUS50dRyV810skV2509G21g alice@beastie (ED25519)

PS > ssh puffy

Welcome to puffy

alice@puffy:~$%

» PUTTY also has an SSH Agent (pageant)

Enter passphrase to load key
rsatey-20220412

QK Cancel

compass-security.com

SSH Agent Forwarding

» SSH agent can be forwarded to a remote server vn&
» This makes the loaded keys available on the remote server. _

alice@beastie:~$ ssh -A jumphost
Welcome to jumphost.

alice@jumphost:~$ echo $SSH_AUTH_SOCK
/tmp/ssh-10bpIHPZjF/agent.1365

alice@jumphost:~$ 1ls -1 $SSH_AUTH_SOCK
srwxr-xr-x 1 alice alice © Feb 21 13:22 /tmp/ssh-10bpIHPZjF/agent.1365

alice@jumphost:~$% ssh-add -1
256 SHA256:4CbWpsIx01X+xvhHAZwWVyPU50dRyV810skV2509G21g alice@beastie (ED25519)

alice@jumphost:~$% ssh puffy
Welcome to pufty.
alice@puffy:~$

compass-security.com

Local admin can access

Jump Host Attacks all servers which are ocal admin can aceess al
accessible from here servers which are accessible
from here
User Windows Jump Host Linux Jump Host Server
2
+ -
. (X J

-~
-

RDP Login ——

B Hijack RDP session
Try to crack encrypted 3
SSH key
Q Decrypt SSH Key

Keylogger to get
SSH passphrase

Dump key from

memory

Load into SSH Agent

Hijack SSH agent LoginviaSSH&
Forward Agent

O Use SSH Agent Socket Hijack SSH agent

<« Authenticate via Agent Pie Authenticate via Agent >
Login via SSH >
(& Forward Agent Again?)

Hijack SSH Agent
on other servers

compass-security.com

SSH Agent Hijacking

= Attacks
» Whoever has access to the SSH agent socket, can use it to authenticate (but not obtain key material).
» |_ow privileged users who can perform privilege escalation.
= External partners with admin access to only one machine.
» Sysadmins with only admin access on limited machines.

compass-security.com

SSH Agent Hijacking

» Example

external-partner@aix:~$ ssh puffy
external-partner@puffy: Permission denied (publickey).
external-partner@aix:~$ ssh -1 alice puffy
alice@puffy: Permission denied (publickey).

external-partner@aix:~$ sudo -i
root@aix:~# find / -type s -1s 2>/dev/null
/tmp/ssh-10bpIHPZjF/agent.1365

root@aix:~# export SSH_AUTH_SOCK=/tmp/ssh-10bpIHPZjF/agent.2305
root@aix:~# ssh-add -1
256 SHA256:4CbWpsIx01X+xvhHAZwWVyPU50dRyV810skV2509G21g alice@beastie (ED25519)

root@aix:~# ssh -1 alice puffy
Welcome to pufty.
alice@puffy:~$

compass-security.com

Exercise Solution

roota@linux-srv-02:~# hostname
linux-srv-02

rootalinux-srv-02:~# id

uid=0(root) gid=0(root) groups=0(root)
rootalinux-srv-02:~i# [

compass-security.com 83

SSH Agent Hijacking

» Recommendation
» Again: Don't store private keys on jump hosts.
» Again: Encrypt private keys using a passphrase.

» Don’t use SSH agent forwarding -
= Explicitly deny SSH agent forwarding on the server _
» Use SSH jump proxy feature ProxyJump
(Connect stdio on the client to a single port forward on the server.)
» Don’t allow interactive login on jump proxy

*% Using S5H agent forwarding - GitHub Docs — Moxzilla Firefox

u Example server Conflg) Using SSH agent forwarc x = +

&« C o O8 github.com

AllowAgentForwarding no
O GitHub Docs Free, Pro, & Team ~

GitHub also warns
from using this feature.

compass-security.com

SSH Jump Proxies

» Example session

alice@beastie:~$ ssh-add

Enter passphrase for /home/alice/.ssh/id ed25519:

Identity added: /home/alice/.ssh/id_ed25519 (alice@beastie)

alice@beastie:~$ ssh-add -1
256 SHA256:4CbWpsIx01X+xvhHAZwWVyPU50dRyV810skV2509G21g alice@beastie (ED25519)

alice@beastie:~$% ssh -J jumphost puffy
Welcome to puffy.
alice@puffy:~$%

" |t's possible to use multiple jump hosts:
alice@beastie:~$ ssh -J jumper,bouncy puffy
Welcome to pufty.

alice@puffy:~$

compass-security.com

SSH Jump Proxies

= Example client config
Host puffy linux-srv-?? aix-srv-??

HostName %h.example.net # Add domain for internal systems

Host *.example.net !jumphost.example.net
ProxyJump jumphost.example.net # connect via the JumpHost

» Example session
alice@beastie:~$% ssh puffy
Welcome to puffy.
alice@puffy:~$

compass-security.com

Remediation

User

Privileged Linux Jump Host

Access

:‘ Workstation
Private key not
- on a server
Protected using
O Decrypt SSH Key FIDO key

Q Load into SSH Agent

TCP Forwarding via SSH

O Use SSH Agent Socket

< Authenticate via Agent

Login via SSH

compass-security.com

>

Zﬁ No interactive
login allowed
$ ssh -J jumphost server

Only forwards TCP data
received via SSH

Server

-

SSH Session Multiplexing

SSH Session Multiplexing

" |t's possible to reuse one TCP connection for multiple SSH sessions.
» Only establish one TCP connection and authenticate once on the server. .
» Faster, because further SSH sessions will use the already established SSH session.

» Example Use Case: Speed up connections via jump proxy
Host jumphost.example.net
ControlMaster auto
ControlPath ~/.ssh/cm-%r-%h-%p
ControlPersist ©
Host *.example.net !jumphost.example.net
ProxyJump jumphost.example.net # connect via the JumpHost

» Example Use Case: Speed up running multiple Ansible Playbooks

compass-security.com

SSH Session Multiplexing

» Establishing first session

alice@beastie:~$ time ssh puffy true
real Oml.000s '

= Control socket exists

alice@beastie:~$ ssh -0 check puffy

Master running (pid=49960)

alice@beastie:~$ 1ls -1 .ssh/cm-alice-puffy-22

SPW------- 1 alice alice 0 Feb 23 14:41 .ssh/cm-alice-puffy-22

» Establishing second session

alice@beastie:~$ time ssh puffy true
real Omo . 080s

= Terminating control socket:

alice@beastie:~$ ssh -0 stop puffy

Stop listening request sent.

alice@beastie:~$ ssh -0 check puffy

Control socket connect(/home/alice/.ssh/cm-alice-puffy-22): No such file or directory

compass-security.com

SSH Session Multiplexing

= Attacks
» Whoever has access to the SSH control socket, can use it to reuse the connection
and establish a new SSH session .

» |_ow privileged users who can perform privilege escalation.
» External partners with admin access to only one machine.
» Sysadmins with only admin access on limited machines.

» Since the connection is already authenticated, no further authentication is required
» No need for passwords, private keys, passphrase for keys
= Even bypasses 2FA

compass-security.com

SSH Session Multiplexing

= Example
external-partner@aix:~$ ssh puffy
external-partner@puffy: Permission denied (publickey). i

external-partner@aix:~$%$ ssh -1 alice puffy
alice@puffy: Permission denied (publickey).

external-partner@aix:~$ sudo -i
root@aix:~# find / -type s -1ls 2>/dev/null
/home/alice/.ssh/cm-alice-puffy-22

root@aix:~# ssh -1 alice -S /home/alice/.ssh/cm-alice-puffy-22 puffy
alice@puffy:~$%

compass-security.com

Exercise Solution

aliceglinux-srv-03:~$ hostname

linux-srv-03

aliceglinux-srv-03:~$ id

uid=1000(alice) gid=1000(alice) groups=1000(alice),27(sudo)
alice@linux-srv-03:~$ |

compass-security.com 96

SSH Session Multiplexing

» Recommendation
» Generally, don’t use SSH control sockets.
» Only allow one session per connection on the server to deny control sockets

= Example server config:
MaxSessions 1

compass-security.com

Cryptographic Algorithms

Cryptographic Algorithms ﬁ
» SSH supports various cryptographic algorithms L\ |/
= Host Key 256 q
= Key Exchange (/7 1\
= Encryption
» Message Authentication

» Recent OpenSSH servers use sane default, but some ciphers are “more secure” than others.

» The Internet is full of recommendations / guides and tools.

compass-security.com

Cryptographic Algorithms

= Attacks
» |f weak algorithms are used, attackers who can intercept your communication could decrypt or even
manipulate it.
» This is however not that easy as it sounds, especially for non-state/nation-level attackers.

» Recommendation
» Audit your SSH config and only enable secure cryptographic algorithms.

» SSH-Audit Hardening Guide: htips://www.ssh-audit.com/hardening quides.html
» Tool to audit your SSH config: ssh-audit

compass-security.com

https://www.ssh-audit.com/hardening_guides.html

Cryptographic Algorithms

$ ssh-audit linux-srv-01

general Example for
(gen) banner: SSH-2.0-OpenSSH_9.1p1 Debian-2 default installation
(gen) software: OpenSSH 9.1pl on Debian.

(gen) compatibility: OpenSSH 8.5+, Dropbear SSH 2018.76+
(gen) compression: enabled (zlib@openssh.com)

key exchange algorithms

"- [info] available since OpenSSH 8.5

(kex) curve25519-sha256 -- [info] available since OpenSSH 7.4, Dropbear SSH 2018.76
(kex) curve25519-sha256@libssh.org -- [info] available since OpenSSH 6.5, Dropbear SSH 2013.62
(kex) ecdh-sha2-nistp256 -- [fail] using weak elliptic curves

"- [info] available since OpenSSH 5.7, Dropbear SSH 2013.62
(kex) ecdh-sha2-nistp384 -- [fail] using weak elliptic curves

"- [info] available since OpenSSH 5.7, Dropbear SSH 2013.62
(kex) ecdh-sha2-nistp521 -- [fail] using weak elliptic curves

- [info] available since OpenSSH 5.7, Dropbear SSH 2013.62
(kex) diffie-hellman-group-exchange-sha256 (2048 bit) -- [info] available since OpenSSH 4.4

(kex) diffie-hellman-groupl6-sha512 -- [info] available since OpenSSH 7.3, Dropbear SSH 2016.73
(kex) diffie-hellman-groupl8-sha512 -- [info] available since OpenSSH 7.3
(kex) diffie-hellman-groupl4-sha256 -- [info] available since OpenSSH 7.3, Dropbear SSH 2016.73

compass-security.com

Cryptographic Algorithms

host-key algorithms

(key) rsa-sha2-512 (3072-bit) - -
(key) rsa-sha2-256 (3072-bit) - -
(key) ecdsa-sha2-nistp256 - -

(key) ssh-ed25519 --

encryption algorithms (ciphers)
(enc) chacha20-polyl305@openssh.com --

aesl128-ctr --
aesl92-ctr - -
aes256-ctr - -
aes128-gcm@openssh.com - -
aes256-gcm@openssh.com - -

(enc)
(enc)
(enc)
(enc)
(enc)

fingerprints

[info]
[info]
[fail]
[warn]
[infoO]
[info]

[info]
[info]
[info]
[info]
[info]
[info]
[info]

available since OpenSSH 7.2

available since OpenSSH 7.2

using weak elliptic curves

using weak RNG could reveal the key

available since OpenSSH 5.7, Dropbear 2013.62
available since OpenSSH 6.5

available since OpenSSH 6.5
default cipher since OpenSSH 6.9.

available
available
available
available
available

since
since
since
since
since

OpenSSH
OpenSSH
OpenSSH
OpenSSH
OpenSSH

3.7, Dropbear SSH 0.52
3.7
3.7, Dropbear SSH 0.52
6.2
6.2

(fin) ssh-ed25519: SHA256:W3Ypt7WQZWeq9XueVDqTfIVzIaly/4KkYSwFzvlgecM
(fin) ssh-rsa: SHA256:CjyhXmy2WEHJu6Pr/085XG6Kh41SL8pCyZgi/ZR3BoM

compass-security.com

Cryptographic Algorithms

message authentication code algorithms

- [info] available since OpenSSH 6.2
(mac) umac-128-etm@openssh.com -- [info] available since OpenSSH 6.2
(mac) hmac-sha2-256-etm@openssh.com -- [info] available since OpenSSH 6.2
(mac) hmac-sha2-512-etm@openssh.com -- [info] available since OpenSSH 6.2

- [info] available since OpenSSH 6.2

- [info] available since OpenSSH 4.7
"- [info] available since OpenSSH 6.2
"- [info] available since OpenSSH 5.9, Dropbear SSH 2013.56

- [info] available since OpenSSH 5.9, Dropbear SSH 2013.56

- [info] available since OpenSSH 2.1.0, Dropbear SSH 0.28

compass-security.com

Questions?

emanuel.duss@compass-security.com
me@emanuelduss.ch
@ https://emanuelduss.ch

) @emanuelduss@infosec.exchange

& ¥ @emanuelduss

compass-security.com

References

References

= Standards
= SSH Protocol Architecture, RFC 4251, 2006: https://datatracker.ietf.org/doc/html/rfc4251
» Secure Shell (SSH) Protocol Parameters, IANA, 2005: hitps://www.iana.org/assignments/ssh-

parameters/ssh-parameters.xhtml
» Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints, RFC 4255, 2006:
https://datatracker.ietf.org/doc/html/rfc4255

» Manpages
» sshd_config(5): DebianBanner, Banner, VerifyHostKeyDNS, AuthenticationMethods,
AuthorizedKeysFile, PermitRootLogin, AllowUsers, AllowGroups
» ssh_config(5): GlobalKnownHostsFile, UserKnownHostsFile, HashKnownHosts
ssh(1): AUTHENTICATION
ssh-keygen(1)

ssh-agent(1)
ssh-add(1)

compass-security.com

https://datatracker.ietf.org/doc/html/rfc4251
https://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml
https://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml
https://datatracker.ietf.org/doc/html/rfc4255

References

» General
» SSH Mastery. 2nd Edition. Michael W Lucas. 2018.

= Session spying
= https://www.infosecmatter.com/ssh-sniffing-ssh-spying-methods-and-defense/

* FIDO Keys Ry
= https://developers.yubico.com/SSH/Securing SSH with FIDO2.html Michael\fVLucas

= Jump Proxy
= https://www.redhat.com/sysadmin/ssh-proxy-bastion-proxyjump

= https://wiki.gentoo.org/wiki/'SSH jump host

= https://www.cyberciti.biz/faq/create-ssh-config-file-on-linux-unix/

compass-security.com

https://www.infosecmatter.com/ssh-sniffing-ssh-spying-methods-and-defense/
https://developers.yubico.com/SSH/Securing_SSH_with_FIDO2.html
https://wiki.gentoo.org/wiki/SSH_jump_host
https://wiki.gentoo.org/wiki/SSH_jump_host
https://www.cyberciti.biz/faq/create-ssh-config-file-on-linux-unix/

compass-security.com 110

	Default Section
	Slide 1: SSH - Secure Shell
	Slide 2: Intro
	Slide 3: SSH Introduction
	Slide 4: Secure Shell
	Slide 5: SSH Tools & Files
	Slide 6: SSH Commands
	Slide 7: SSH Commands
	Slide 8: Useful Use-Case for Pentests
	Slide 9: Useful Use-Case for Pentests
	Slide 11: SSH Server Commands
	Slide 12: Service Exposure
	Slide 13: Service Exposure
	Slide 14: Service Exposure
	Slide 15: Information Disclosure
	Slide 16: Information Disclosure
	Slide 23: SSH Authentication
	Slide 24: Host Authentication
	Slide 25: Host Authentication
	Slide 26: Host Authentication
	Slide 27: User Authentication
	Slide 28: User Authentication
	Slide 30: Exercise Solution
	Slide 31: Password Sniffing as Root
	Slide 32: Password Sniffing as Root
	Slide 33: Session Sniffing as Root
	Slide 34: SSHSpy Demo
	Slide 35: Public Key Authentication
	Slide 36: Public Key Authentication
	Slide 37: Public Key Authentication
	Slide 38: Allowed Users & Groups
	Slide 39: Public Key Information Leakage
	Slide 40: Public Key Information Leakage
	Slide 41: Public Key Information Leakage
	Slide 42: Public Key Information Leakage
	Slide 43: Public Key Information Leakage
	Slide 45: Exercise Solution
	Slide 46: Private Key Information Leakage
	Slide 54: 2FA Authentication: OTP
	Slide 55: 2FA Authentication: OTP
	Slide 56: 2FA Authentication: OTP
	Slide 57: 2FA Authentication: FIDO2
	Slide 58: 2FA Authentication: FIDO2 with Resident Key
	Slide 59: 2FA Authentication: FIDO2 with Resident Key
	Slide 60: 2FA Authentication: FIDO2 with Resident Key
	Slide 61: 2FA Authentication: FIDO2 with Resident Key
	Slide 62: 2FA Authentication: FIDO2 with Resident Key
	Slide 63: 2FA Authentication: FIDO2 Without Touch
	Slide 64: 2FA Authentication: FIDO2 Without Touch
	Slide 65: 2FA Authentication: FIDO2 Without User Authentication
	Slide 66: 2FA Authentication: FIDO2 With User Authentication
	Slide 67: 2FA Authentication: FIDO2 With User Authentication
	Slide 73: SSH Agent
	Slide 74: SSH Agent
	Slide 75: SSH Agent
	Slide 76: SSH Agent
	Slide 77: SSH Agent
	Slide 78: SSH Agent Forwarding
	Slide 79: Jump Host Attacks
	Slide 80: SSH Agent Hijacking
	Slide 81: SSH Agent Hijacking
	Slide 83: Exercise Solution
	Slide 84: SSH Agent Hijacking
	Slide 85: SSH Jump Proxies
	Slide 86: SSH Jump Proxies
	Slide 87: Remediation
	Slide 90: SSH Session Multiplexing
	Slide 91: SSH Session Multiplexing
	Slide 92: SSH Session Multiplexing
	Slide 93: SSH Session Multiplexing
	Slide 94: SSH Session Multiplexing
	Slide 96: Exercise Solution
	Slide 97: SSH Session Multiplexing
	Slide 100: Cryptographic Algorithms
	Slide 101: Cryptographic Algorithms
	Slide 102: Cryptographic Algorithms
	Slide 103: Cryptographic Algorithms
	Slide 104: Cryptographic Algorithms
	Slide 105: Cryptographic Algorithms
	Slide 106: Questions?
	Slide 107: References
	Slide 108: References
	Slide 109: References
	Slide 110

